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Symmetry breaking bifurcation for coupled chaotic attractors 
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Physics Department, Bergische Universitit Wuppertal, Gaurstrasre 20, D-5600 Wuppertal 
I, Federal Republic of Germany 

Received 20 May 1991 

Abstract. We consider transitions from synchronous to asynchronous chaotic motion in 
two identical dissipatively caupledone-dimensional mappings. We show that the probability 
density o f t h e  asymmetric component satisfies a scaling law. The exponent in this scaling 
law varies continuously with the distance from the bifurcation paint, and is determined 
by the spectrum of local Lyapunov exponents o f t h e  uncoupled map. Finally we show that 
the topology of the invariant set is rather unusual: though the attractor for supercritical 
coupling is a line, it is surrounded by a strange invariant set which is dense in a two- 
dimensional neighbourhood of the attractor. 

1. Introduction 

A natural path leading from simple dynamical systems to more complicated ones 
consists in coupling several identical copies of the simple system. This idea has been 
exploited in  [I-SI, where only small numbers of coupled systems were considered. 
Systems of very many coupled maps arranged in regular lattices are known as coupled 
map lattices [7], but will not be  considered here. 

The papers [ l ,  2, 61 focus on dissipative couplings which tend to synchronize the 
subsystems. In [ l ,  21 it was shown that for strong dissipative coupling a synchronous 
regime is reached where the subsystems move completely in  phase and with the same 
amplitude. With decreasing coupling strength, this regime looses stability and the 
instantaneous states of the subsystems begin to differ. The instability threshold was 
shown in [ l ,  21 to depend on the Lyapunov number of the chaotic motion. In  [8] it 
was proposed to use this for experimental estimates of the Lyapunov number, by 
actually coupling two identical systems. The  loss of stablity of the synchronous regime 
can be considered as a spontaneous symmetry breakdown, at least as far as the symmetry 
of the instantaneous state is concerned. In a statistical sense, the symmetry will in 
general be preserved even in the broken phase. This is seen in figure 1, where the 
distribution is symmetric in the asynchronous state. For experimental observation of 
this bifurcation see [SI. 

Detailed theories of the symmetry breaking bifurcation were developed i n  [Z, 9, 
lo]. In  [2], a mean-field approximation was used to show that both hard and soft 
transitions may occur. A hard transition was observed, for example, in [ I ]  for interacting 
Lorenz attractors. For a special case of interacting logistic maps a nonlinear statistical 
theory was developed in [9]. This theory describes well the intermittent properties 
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observed in the numerical experiments of [ l l ]  and gives a Gaussian distribution for 
the asymmetrical component. However, this theory cannot be directly applied to more 
general chaotic attractors, where power-law distributions of the asymmetrical com- 
ponent are usually observed [ 111 .  
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Figure 1. Attractor in the system ( I ) ,  (7) with (I = i .  For this system, 0,=0.2354.. . . ( a ) :  
o=uc+0.05: panel ( b ) :  o=u,-0.05. 

In this paper we present a theory which indeed gives such a power-law distribution 
for the asymmetrical component (section 2), and test it for coupled I D  maps. It turns 
out that the exponent depends on the spectrum of local Lyapunov exponents [12, 131 
in a non-trivial way. While this power law is obtained already in linear stability analysis, 
we also give a full nonlinear analysis in section 4. Before that, we point out that in 
section 3 a number of very unusual topological features of the attractor. 

2. Linear stability analysis 

The systems we consider throughout this paper can be written as 

X"+I =f(x.) + d f ( Y " )  -f(x")) 
Yn+, =f(Y") + d f ( x . )  -f(y.)) 

where f is some nonlinear function which governs the dynamics of the single system, 
and U is an interaction constant. It is convenient to introduce the variables 

Then ( 1 )  reduces to 

U,+, = M U "  + U,) + f ( u ,  - 0 " ) )  

U,,+, = ( f -u) ( f (u"  + u , ) - f ( u ,  - uf i ) ) .  
(3) 

One can easily see from ( 3 )  that for this type of coupling a synchronous state U, = 0, 
U,,+, =f(u,) exists for all U, Linearizing near this state we obtain 

U,+I =f(u.) U,+, = ( 1  - 2 u ) f ' ( u . ) u .  (4) 
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or, for the variable z. = InJv,l, 

z ” + ~  = zn+In(l-2u)+lnlf’(u,)~.  ( 5 )  

In(] -2uJ + A = 0 (6) 

From ( 5 )  one immediately obtains the stability threshold uc as [ l ,  21 

where 

is the Lyapunov exponent for the uncoupled system. For U <  U< an asynchronous state 
arises, as is illustrated in figure 1 with the skewed tent map 

We will consider ( 3 )  near this threshold, so it is convenient to use the bifurcation 
parameter & =lnl l -2ul+h which vanishes at the threshold (6), and to rewrite ( 5 )  in 
the form 

z.+~ = z, + &+lnlf’(u,)I - A .  (8) 
If the trajectory U. is chaotic, the increments z,+, - z, are essentially random variables. 
They are of course not independent, but the correlations between them will in general 
decay exponentially. Thus we can expect that the averaged quantities 

1 ( k + I j K - I  

Ax =x 1 Inlf ’(uJ (9) 
n = h N  

become independent for large N. Also, these quantities (which can be considered as 
‘local’ or  ‘effective’ Lyapunov exponents [ 14, IS]) should satisfy a central limit theorem 
for N+m. This implies for their probability distribution p(A; N )  an ansatz [13] 

p(A; N)-eNmc” (10) 

dAp(A; N)e”“=eNR‘” ( 1 1 )  

and for its generating function [12] 

I 
with g(s) and +(A)  being mutual Legendre transforms, 

We will now show that (8)-(12) imply a power law for the distribution of /u I .  From 
(8) we obtain 

z ( ( r + , ) N = z h N  + N ( & - A ) + N A x .  (13) 
According to our assumptions, the correlations between zhN and AI can be neglected. 
Thus the probability distributions W k ( z )  and W,+, (z )  for z I N ,  respectively zlrtllN, 
satisfy [ 161 

W k + , ( z )  = dA p ( A ;  N )  Wk(Z- N ( E  - A )  - NA). (14) J 
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We look for a stationary distribution. If we try an ansatz 

A S Pikousky and P Grassberger 

W,( z )  = W , + , ( z )  = e"' 

then we get 

(16) el r -A)xN dAp(A: N )  e -*N~\ ;=eNRI-KI  - J  
In terms of the variable IuI =ei, this gives a power law distribution 

P"(l4)=l~lM-' (17) 

with K obtained implicitly from 

g(-K)+(r\--E)K =o. (18) 

As for any perfect power law, this distribution is not normalizable. Indeed, since 
g(0) = O  and g'(s) is monotonic with g'(0) = A,  we see that K changes sign exactly at 
the bifurcation point E = 0, so that the distribution diverges for 1 0 1  + m if U < uc, and 
for U + 0 if U >  uc. To obtain a normalizable distribution, we have to take into account 
that (7) has to break down at large values of z (i.e. large values of U). It will also 
break down at large negative values of z (i.e. for u + O )  if the symmetry between the 
two systems is slightly broken. 

The symmetry breaking can be done explicitly, by considering slightly non-identical 
systems [2, 171, or implicitly by adding noise to (1). 

Let us assume that the uncoupled systems depend on a parameter b, and let us 
consider instead of (1) two coupled systems with slightly different parameters b * y: 

(19) 
x " + i = f ( x " , b + ~ ) + u ( f ( y , , b - y ) - f ( x " , b + y ) )  

y , + , = f ( Y , , b - y ) + u ( f ( x . ,  b + y ) - f ( y n ,  b - r ) )  

Then instead of (4) we obtain 

For 10.1 s y the second term in (20) dominates, thus giving a lower cutoff at IuI = y. A 
similar cutoff is provided if we replace (1) by 

where r, and s, are independent Gaussian random noises with ( r , , rm) = (s.s,) = S,,y. 
While the cutoff at small /u l  is not intrinsic to the system, the cutoff at large IuI is 

unavoidable because of terms in (3) which are nonlinear in U,,. I t  depends on the 
precise form of the mapping 1: For the logistic map at fully developed chaos ( f ( x )  = 
4x(l-x)) ,  a nonlinear stability analysis was developed in [9]. In  the following we 
shall present a similar theory for the piecewise-linear map given in (7), and compare 
it with direct simulations. But before doing this, we have to discuss some geometric 
and topological aspects related to this problem. 
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3. Geometrical and topological aspects 

In this section, we shall concentrate on the subcritical case depicted in figure l ( a ) ,  
with A > - In( l -2u)  < A,,,sx. Here A,,,, is the supremum of the support of +(A) ,  which 
coincides in general with the Lyapunov exponent of the most unstable periodic cycle 
of the map f ( x ) .  We have argued in section 2 that for such couplings there exists an 
(albeit non-normalizable) smooth invariant measure outside the diagonal x = y. This 
would indicate that there exists a strange invariant set which is dense in some two- 
dimensional neighbourhood of the diagonal. 

Indeed, we shall see that the situation is not at all as trivial as might be suggested 
by figure l (a) .  In particular, as we will see below, definitions of attractors based on 
topological concepts [18-211 would not give the seemingly obvious result that the 
attractor in this case is the diagonal x = y. This is only obtained if one adopts the 
definition of [22] based on measure-theoretic concepts. Even then, the attractor has 
very strange properties. We will argue that: 

(i) points on the attractor for which the unstable manifold is two-dimensional are 
dense on it; 

(i i)  for all points on the attractor (except ( x , y )  =(O,O) and ( I ,  1)) there exist 
neighborhoods in which periodic points and points diverging exponentially from it 
are dense. 

skew tent map of (7) with a > $ .  In this case, the average Lyapunov exponent is 
Though these results should hold more generally, we shall discuss here only the 

A = -a In a -(1 - a )  In(1 - a )  ( 2 2 )  

while the fixed point xrP= 1/(2- a )  has Lyapunov exponent 

A[,,= -In( 1 - a )  > A. ( 2 3 )  

Correspondingly, global stability is lost at 

while the fixed point loses stability only at 

Let us now chose U such that uc< U < u ~ , ~ ~ .  This is the case shown in figure l (a) ,  with 
a seemingly one-dimensional attractor. But in its fixed point ( U ,  U )  = (xrp, 0), the coupled 
system has two positive Lyapunov exponents and thus a two-dimensional unstable 
manifold. The same will hold for all preimages of this point, which fill the diagonal 
in figure l ( a )  densely. This proves our first point. 

Moreover, one easily sees that a line ( U ,  V I  u = xrD, -U, < v < U,) with sufficiently 
small U ,  will be mapped onto a similar line { u , u ~ u = x r , , - v 2 < u < u 2 }  with v z > u , .  
Thus the set of all its forward iterates is an invariant C"-manifold of the fixed point, 
I n  figure 2 we show the first few iterates of such a line for a =: and U =  ( U ~ + U ~ , ~ ~ ) / ~ .  

They seem to start filling up the rhombus ABCD. This is confirmed by much longer 
iterates which fill the rhombus densely within the accuracy of the figure. Indeed this 
rhombus, with a point A defined by (xA,yA)=(2u ,  ( 1  -2u+2u ' ) / ( l  - U ) )  and C by 
(xc, yc) = (ya, x A ) ,  is easily checked to be invariant. The invariant polygon shown in 
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Figure 2. First 17 images of the interval {u=xr , ,  OS uS0.01) in the system defined by 
( I ) ,  (7) with a = + ,  V = ( U ~ + V ~ , , ~ ) / ~ .  The rhombus ABCD with x A = 2 u ,  y A =  
( l - Z u + Z ~ * ) ( l - u ) ~ ' ,  xc=ya. y,=x,  is  mapped onto itself. 

figure 2 and its preimages contain the dense set of points diverging from the attractor 
mentioned in the second item above. We might add that similarsets arise from all 
other unstable periodic orbits of f ( x )  whose Lyapunov exponent is such that their uc 
is larger than U. These points are again dense. 

Finally, we computed all periodic orbits of the coupled system with period up  to 
p = 16 (see figure 3). We found that all asymmetric cycles (i.e. cycles with x, # y . )  are 
of node or of focus type, i.e. they have two-dimensional unstable manifolds. As seen 
in figure 3, the distribution of cycles is very non-uniform. Nevertheless, by comparing 
orbit sets with different periods we conjecture that they become dense in the rhombus 
ABCD for p-rm. This would indeed be expected if the omega limit set is dense in 

Figure 3. All periodic orbits of ( I ) ,  (7)  with period p s  16. For increasing p .  these points 
seem to fi l l  the rhombus ABCD of figure 2 densely. 
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this rhombus. For large p, the density of periodic points should become proportional 
Lo the density of the maximum entropy measure of the coupled system. The non- 
uniformity seen in figure 3 corresponds then to strong multifractality of this measure. 
We might add that the numbers N,, of points on p-periodic asymmetric orbits for 
p = 2,4 ,6 , .  . . ,16  are 6,30,130,454,1676,7236,28 454 and 110 678. This suggests that 
the topological entropy of asymmetric orbits is =In 2, close to the entropy of symmetric 
orbits. 

Let us now compare this with attractor definitions found in the literature. For 
instance, in [ 191 an attractor was defined as a closed subset d of the non-wandering 
set 0 which has a neighbourhood U such that On,, f " U  = d. With this definition 
obviously the rhombus ABCD would be the attrctor in the present case. The fact that 
this definition is too strong was already observed earlier, e.g. since it would not apply 
to the Feigenbaum attractor which has unstable periodic orbits arbitrarily close to it, 
so that no open neighbourhood could be completely attracted. 

The definition which indeed gives the diagonal x = y  as attractor is the one by 
Milnor [22], who essentially demands that d is a closed set for which: 

( i )  the realm ofatfraction p ( d )  has strictly positive measure, and 
(i i)  there is no strictly smaller closed set d'c .d whose realm of attraction coincides 

with p ( d )  up to Lebesgue measure zero. 
The realm of attraction is essentially what is usually called the basin of attraction, 

namely the set of all points whose omega limit set is in d. 
The essential feature here is that it is not demanded that the realm of attraction is 

an open set or contains any open neighbourhoods. The only thing we still have to 
prove is that the omega limit sets of most points with x = y  are on the diagonal. A 
priori, it could be that most trajectories make rare and short excursions away from it 
which would not be seen in a picture like figure l (a ) .  We can exclude this if we accept 
the linear stability analysis of the last section. From (8) and ( I O )  one can easily deduce 
that the probability p(u. > U*), U* > 0 for a randomly chosen initial point decreases 
exponentially with n. The probability of a later excursion satisfies P (  U, > U*) < 
X,,, p(u,  > U*) and tends thus also to zero for n 00. 

4. Nonlinear stability analysis 

Let us now come back to describing the invariant probability distribution of U in the 
subcritical case where symmetry is broken (figure l (b) ) .  We again discuss only the 
tent map (7) with a > ; .  Inserting it into (3), we find the following. If U, lies outside 
the interval I. =(a-lu, l ,  a+lu,l), the linearized equation (4) remains valid. But if U, 

falls into the interval I, (this occurs approxiately with probability 12u,l), equation (4) 
is modified. The ratio [un+, /unl  is a piecewise linear function of U,, shown in figure 4. 
Let us neglect the small influence of U on the dynamics of U and assume that the 
density of U, is uniform as it would be for the uncoupled map. Then, with probability 
1 -2lu,l the linearized equation (4) is valid (this corresponds to the part of figure 4 
outside I " ) ,  and with probability 21u,) the right-hand side of (4) is additionally 
multiplied by a random quantity p, uniformly distributed between 0 and 1 (this 
corresponds to the part of figure 4 inside 1"). Thus, within these assumptions we obtain 
for z, = Inlu,l the equation 
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Figure 4. Sketch of U,,+,/",, against U,, for fixed U,,. Only outside the interval if,, U,,+, 
depends linearly on U,,. 

where 7" and 6" are random variables with densities Q( 7) (respectively P (6)) given by 

(27) 
Q ( 7 )  = a8(7 - Inl( l -2v)/al)+(l  - a ) 8 ( q  -lnl(l-2u)/(l  - a ) \ )  

P ( 6 )  = ec -co<g<o 

and q(z , )  is a random variable which assumes the values q(z . )=O with probability 
1 -2/v,I = 1 -2e',v, and q(z, ,)  = 1 with probability Zlu.l= 2e'm.. The probability distribu- 
tion W.(z) obeys thus an equation 

W,+dz)= w , ( ~ - n ) Q ( n ) ( l - 2 e ' - ~ ) d l l  I 
This can be simplified to 

Let us look for the asymptotic behaviour of W(z) for large negative z. Assuming that 
in this domain W(z)-exp ( K Z ) ,  we obtain for K 

(30) 

For K < 1 the second and the third terms in eq. (30) may be neglected and from eqs. 
(30). (27) follows 

a exp(-K In l ( l -2u) /n( )+( l -a )  exp(-K Inl( l -2u)/( l  - a ) l ) =  I .  (31) 

This is just the equation that follows from (18) if one uses for the tent map the scaling 
function $(A) derived in [13]. Equation (31) is valid, however, onlyfor K < I .  Otherwise 
the second term in  (30) cannot be neglected. This happens for sufficiently small U 
where one finds K = 1 ,  i.e. W(z)-e'. This corresponds to a non-singular and smooth 
probability distribution P,(lul)= constant at IuI -0. Equation (31) was checked by 
direct simulations. As seen in figure 5, agreement is very good. 

I 2 
e x p ( - ~ 7 ) + 2  exp(z(1 - K ) -  q)--exp(z(2- K )  -27)  Q( 7) dv = I .  I[ K 
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Figure 5. ( 0 )  Probability density (in arbitrary units) of the variable i in  the system given 
by eqs. (19). (7) for a = i ,  y =  10-" and for different values of coupling constant: crosses: 
E = -0.075. open squares: F = -0.035, filled squares: E = -0.01, open circles: B = 0, filled 
circles: E = 0.01, open triangles: F =0.035, filled triangles; e =0.1. ( b )  Slopes ofthe curves 
111 PWCI I Y I  U ,  LIK LSI I I I~LI  ~ F ~ W I I  W I ~ S  wcsc  curves arc linear icirciesi, compared with 

theoretical prediction (31) (solid curve). 

i., ""-a, !^ \  :- .LA ... :-. ... L.-" .L... ~~ ~~ ~ ~~ 

Unfortunately, we were not able to get a closed solution of (29) in the general case. 
We can solve (29) only in the symmetrical case a = f ,  where the probability density 
shows no power-law asymptotics since $ ( A )  = 6(A) .  For a = f  

Q(v) =S(v- ln l2(1-2u) l )  = 6 ( q -  E )  

Substituting into (29) we get 

W,+ , (Z+E)=  W,,(z)(l-2e')+2ez 
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For E << 1 we may write W(z + E )  = W( z) + E d W/dz and obtain the following invariant 
distribution 

A S Pikovsky and P Grassberger 

We compare solution (32) with numerical results in figure 6 

5. Conclusions 

We have shown that at the symmetry breaking bifurcation in the system of interacting 
one-dimensional maps the asymmetric component has a power-law probability density, 
with the power determined by the scaling function of the Lyapunov exponent. The 
high probability of large deviations is connected with the weak stability of the sym- 
metrical state: if the coupling constant is increased, more and more trajectories lose 
stability, but below threshold the measure of unstable trajectories is zero. 

1 
1nW - 

8 -  

4 -  

Figure 6. Numerically obtained probability density (in arbitrary units) in the system given 
b y e q s . ( l ) , ( 7 )  f o r n = $ a n d  e=1O~’(crosres), ~ = I O - ~ ( o p e n s q u a r e r ) .  e=5xlO-’ ( f i l led 
squares). Comparison with the theoretical formula (32)  shows better agreement for 
small F .  

Nevertheless, these trajectories have a very profound effect on the topology of the 
attractor basin, and imply that attractor definitions have to be chosen very carefully. 
Also, this instability is seen in perturbed systems, where the scaling law becomes 
manifest also in the phase with unbroken symmetry. 

While we have treated a rather special system, we believe that similar results hold 
much more generally, namely whenever a strange attractor undergoes a continuous 
bifurcation. In such cases-which typically should be accompanied by a spontaneous 
symmetry breakdown just as conventional critical phenomena-some sets of points 
with measure zero will in general have anomalously large instability (like the fixed 
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point in our example) or stability. These sets can be unstable (stable) though the system 
in globally stable (unstable). This will imply scaling laws and topological complications 
just as in our simple example. One practical consequence is that not perfectly clean 
systems will show 'precursors' of the bifurcation in the form of scale invariant fluctu- 
ations. They strongly enhance noise and small asymmetries, rendering thereby measure- 
ments of Lyapunov exponents by the method suggested in [8] very difficult, for example. 

The essential part of our treatment is based on the fact that evolution of the 
~symme!ricz! ccmpnnen: is gnverned by Ructu-!ing !nca! Lyapl?na? expenen!. We 
expect that the same approach will be valid also in the other situations governed by 
fluctuating local expansion rates, for example in the statistics of trajectory separation 
in ensembles of systems subject to common noise [23]. 
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